Perbandingan Kinerja Metode Regresi K-Nearest Neighbor dan Metode Regresi Linear Berganda pada Data Boston Housing
نویسندگان
چکیده
This research was made in order to see which method performance is better between the KNN (K-Nearest Neighbor) regression and multiple linear on Boston Housing data. The performace referred here MAE, RMSE, MAPE, R2. a predict something based closest training examples of an object. Meanwhile, forecasting technique involving more than one independent variable. comparison two methods results Mean Absolute Percent Error (MAPE). In this definitions distance used are Euclidean Minkowski distance. K value defines number nearest neighbors be examined determine dependent variable, we use values from 1 10 for each test data definition research, percentage 20%, 30%, 40% both methods. best MAPE obtained by 12,89% at = 3 13,22% Meanwhile 17,17%. as seen smaller method.
منابع مشابه
Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملMetode lociranja za bodoče lokacijske storitve
Povzetek. V tem prispevku podajamo pregled obstoječih in prihajajočih metod lociranja v mobilnem okolju. Z rastjo mobilnih tehnologij in povečano uporabo ter razširitvijo mobilnih terminalov, mobilne storitve in aplikacije, med njimi tudi tako imenovane lokacijske storitve, pridobivajo čedalje več pozornosti. Kontekst uporabe je pomemben element za personalizacijo bodočih sistemov za pridobivan...
متن کاملk-Nearest Neighbor Classification on Spatial Data
Classification of spatial data streams is crucial, since the training dataset changes often. Building a new classifier each time can be very costly with most techniques. In this situation, k-nearest neighbor (KNN) classification is a very good choice, since no residual classifier needs to be built ahead of time. KNN is extremely simple to implement and lends itself to a wide variety of variatio...
متن کاملK-Nearest Neighbor Classification Using Anatomized Data
This paper analyzes k nearest neighbor classification with training data anonymized using anatomy. Anatomy preserves all data values, but introduces uncertainty in the mapping between identifying and sensitive values. We first study the theoretical effect of the anatomized training data on the k nearest neighbor error rate bounds, nearest neighbor convergence rate, and Bayesian error. We then v...
متن کاملDissolution test of various low-dose acetylsalicylic acid preparations marketed in Indonesia
Metode Studi disolusi dilakukan mengikuti Farmakope Amerika (USP)/Eropa, metode A, menggunakan alat 1 USP (keranjang) 100 rpm, dengan 2 media: 0,1 N HCl, 120 menit untuk stadium asam, dan buffer fosfat pH 6,8, 90 menit untuk stadium dapar. Sampel diambil pada 120 menit untuk stadium asam, dan setiap 10 menit sampai dengan 90 menit untuk stadium dapar. Asam asetilsalisilat diukur kadarnya dengan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JAMBURA JOURNAL OF PROBABILITY AND STATISTICS
سال: 2023
ISSN: ['2722-7189']
DOI: https://doi.org/10.34312/jjps.v4i1.18948